3.388 \(\int \cot ^6(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx\)

Optimal. Leaf size=167 \[ -\frac {\left (15 a^2+25 a b+8 b^2\right ) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{15 f (a+b)^2}-\frac {\sqrt {a} \tan ^{-1}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{f}-\frac {\cot ^5(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{5 f}-\frac {(b-5 (a+b)) \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{15 f (a+b)} \]

[Out]

-arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))*a^(1/2)/f-1/15*(15*a^2+25*a*b+8*b^2)*cot(f*x+e)*(a+b+b*
tan(f*x+e)^2)^(1/2)/(a+b)^2/f-1/15*(-4*b-5*a)*cot(f*x+e)^3*(a+b+b*tan(f*x+e)^2)^(1/2)/(a+b)/f-1/5*cot(f*x+e)^5
*(a+b+b*tan(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Rubi [A]  time = 0.33, antiderivative size = 167, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {4141, 1975, 475, 583, 12, 377, 203} \[ -\frac {\left (15 a^2+25 a b+8 b^2\right ) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{15 f (a+b)^2}-\frac {\sqrt {a} \tan ^{-1}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{f}-\frac {\cot ^5(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{5 f}-\frac {(b-5 (a+b)) \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{15 f (a+b)} \]

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]^6*Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

-((Sqrt[a]*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/f) - ((15*a^2 + 25*a*b + 8*b^2)*Cot[
e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/(15*(a + b)^2*f) - ((b - 5*(a + b))*Cot[e + f*x]^3*Sqrt[a + b + b*Tan
[e + f*x]^2])/(15*(a + b)*f) - (Cot[e + f*x]^5*Sqrt[a + b + b*Tan[e + f*x]^2])/(5*f)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 475

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[((e*x)^(m
 + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(a*e*(m + 1)), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)*(a + b*
x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*b*(m + 1) + n*(b*c*(p + 1) + a*d*q) + d*(b*(m + 1) + b*n*(p + q + 1))*x^n, x
], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[0, q, 1] && LtQ[m, -1] &&
IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 583

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[(e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*c*g*(m + 1)), x] + Dist[1/(a*c*
g^n*(m + 1)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + n + 1) - e
*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] &&
 IGtQ[n, 0] && LtQ[m, -1]

Rule 1975

Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*ExpandToSum[u, x]^p*ExpandToSum[v, x]^q
, x] /; FreeQ[{e, m, p, q}, x] && BinomialQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0]
&&  !BinomialMatchQ[{u, v}, x]

Rule 4141

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[((d*ff*x)^m*(a + b*(1 + ff^2*x^2)^(n/2))^p)/(1 + ff^
2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && IntegerQ[n/2] && (IntegerQ[m/2] ||
EqQ[n, 2])

Rubi steps

\begin {align*} \int \cot ^6(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {\sqrt {a+b \left (1+x^2\right )}}{x^6 \left (1+x^2\right )} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {\operatorname {Subst}\left (\int \frac {\sqrt {a+b+b x^2}}{x^6 \left (1+x^2\right )} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac {\cot ^5(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{5 f}+\frac {\operatorname {Subst}\left (\int \frac {b-5 (a+b)-4 b x^2}{x^4 \left (1+x^2\right ) \sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{5 f}\\ &=-\frac {(b-5 (a+b)) \cot ^3(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{15 (a+b) f}-\frac {\cot ^5(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{5 f}-\frac {\operatorname {Subst}\left (\int \frac {-15 a^2-25 a b-8 b^2+2 b (b-5 (a+b)) x^2}{x^2 \left (1+x^2\right ) \sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{15 (a+b) f}\\ &=-\frac {\left (15 a^2+25 a b+8 b^2\right ) \cot (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{15 (a+b)^2 f}-\frac {(b-5 (a+b)) \cot ^3(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{15 (a+b) f}-\frac {\cot ^5(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{5 f}+\frac {\operatorname {Subst}\left (\int -\frac {15 a (a+b)^2}{\left (1+x^2\right ) \sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{15 (a+b)^2 f}\\ &=-\frac {\left (15 a^2+25 a b+8 b^2\right ) \cot (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{15 (a+b)^2 f}-\frac {(b-5 (a+b)) \cot ^3(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{15 (a+b) f}-\frac {\cot ^5(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{5 f}-\frac {a \operatorname {Subst}\left (\int \frac {1}{\left (1+x^2\right ) \sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac {\left (15 a^2+25 a b+8 b^2\right ) \cot (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{15 (a+b)^2 f}-\frac {(b-5 (a+b)) \cot ^3(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{15 (a+b) f}-\frac {\cot ^5(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{5 f}-\frac {a \operatorname {Subst}\left (\int \frac {1}{1+a x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{f}\\ &=-\frac {\sqrt {a} \tan ^{-1}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{f}-\frac {\left (15 a^2+25 a b+8 b^2\right ) \cot (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{15 (a+b)^2 f}-\frac {(b-5 (a+b)) \cot ^3(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{15 (a+b) f}-\frac {\cot ^5(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{5 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.65, size = 178, normalized size = 1.07 \[ -\frac {\cot (e+f x) \left (-\left (11 a^2+21 a b+10 b^2\right ) \csc ^2(e+f x)+23 a^2+3 (a+b)^2 \csc ^4(e+f x)+40 a b+15 b^2\right ) \sqrt {a+b \sec ^2(e+f x)}}{15 f (a+b)^2}-\frac {\sqrt {2} \sqrt {a} \cos (e+f x) \sqrt {a+b \sec ^2(e+f x)} \tan ^{-1}\left (\frac {\sqrt {a} \sin (e+f x)}{\sqrt {-a \sin ^2(e+f x)+a+b}}\right )}{f \sqrt {a \cos (2 e+2 f x)+a+2 b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[e + f*x]^6*Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

-((Sqrt[2]*Sqrt[a]*ArcTan[(Sqrt[a]*Sin[e + f*x])/Sqrt[a + b - a*Sin[e + f*x]^2]]*Cos[e + f*x]*Sqrt[a + b*Sec[e
 + f*x]^2])/(f*Sqrt[a + 2*b + a*Cos[2*e + 2*f*x]])) - (Cot[e + f*x]*(23*a^2 + 40*a*b + 15*b^2 - (11*a^2 + 21*a
*b + 10*b^2)*Csc[e + f*x]^2 + 3*(a + b)^2*Csc[e + f*x]^4)*Sqrt[a + b*Sec[e + f*x]^2])/(15*(a + b)^2*f)

________________________________________________________________________________________

fricas [B]  time = 3.95, size = 849, normalized size = 5.08 \[ \left [\frac {15 \, {\left ({\left (a^{2} + 2 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{4} - 2 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{2} + a^{2} + 2 \, a b + b^{2}\right )} \sqrt {-a} \log \left (128 \, a^{4} \cos \left (f x + e\right )^{8} - 256 \, {\left (a^{4} - a^{3} b\right )} \cos \left (f x + e\right )^{6} + 32 \, {\left (5 \, a^{4} - 14 \, a^{3} b + 5 \, a^{2} b^{2}\right )} \cos \left (f x + e\right )^{4} + a^{4} - 28 \, a^{3} b + 70 \, a^{2} b^{2} - 28 \, a b^{3} + b^{4} - 32 \, {\left (a^{4} - 7 \, a^{3} b + 7 \, a^{2} b^{2} - a b^{3}\right )} \cos \left (f x + e\right )^{2} + 8 \, {\left (16 \, a^{3} \cos \left (f x + e\right )^{7} - 24 \, {\left (a^{3} - a^{2} b\right )} \cos \left (f x + e\right )^{5} + 2 \, {\left (5 \, a^{3} - 14 \, a^{2} b + 5 \, a b^{2}\right )} \cos \left (f x + e\right )^{3} - {\left (a^{3} - 7 \, a^{2} b + 7 \, a b^{2} - b^{3}\right )} \cos \left (f x + e\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )\right ) \sin \left (f x + e\right ) - 8 \, {\left ({\left (23 \, a^{2} + 40 \, a b + 15 \, b^{2}\right )} \cos \left (f x + e\right )^{5} - {\left (35 \, a^{2} + 59 \, a b + 20 \, b^{2}\right )} \cos \left (f x + e\right )^{3} + {\left (15 \, a^{2} + 25 \, a b + 8 \, b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{120 \, {\left ({\left (a^{2} + 2 \, a b + b^{2}\right )} f \cos \left (f x + e\right )^{4} - 2 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} f \cos \left (f x + e\right )^{2} + {\left (a^{2} + 2 \, a b + b^{2}\right )} f\right )} \sin \left (f x + e\right )}, \frac {15 \, {\left ({\left (a^{2} + 2 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{4} - 2 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{2} + a^{2} + 2 \, a b + b^{2}\right )} \sqrt {a} \arctan \left (\frac {{\left (8 \, a^{2} \cos \left (f x + e\right )^{5} - 8 \, {\left (a^{2} - a b\right )} \cos \left (f x + e\right )^{3} + {\left (a^{2} - 6 \, a b + b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{4 \, {\left (2 \, a^{3} \cos \left (f x + e\right )^{4} - a^{2} b + a b^{2} - {\left (a^{3} - 3 \, a^{2} b\right )} \cos \left (f x + e\right )^{2}\right )} \sin \left (f x + e\right )}\right ) \sin \left (f x + e\right ) - 4 \, {\left ({\left (23 \, a^{2} + 40 \, a b + 15 \, b^{2}\right )} \cos \left (f x + e\right )^{5} - {\left (35 \, a^{2} + 59 \, a b + 20 \, b^{2}\right )} \cos \left (f x + e\right )^{3} + {\left (15 \, a^{2} + 25 \, a b + 8 \, b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{60 \, {\left ({\left (a^{2} + 2 \, a b + b^{2}\right )} f \cos \left (f x + e\right )^{4} - 2 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} f \cos \left (f x + e\right )^{2} + {\left (a^{2} + 2 \, a b + b^{2}\right )} f\right )} \sin \left (f x + e\right )}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^6*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/120*(15*((a^2 + 2*a*b + b^2)*cos(f*x + e)^4 - 2*(a^2 + 2*a*b + b^2)*cos(f*x + e)^2 + a^2 + 2*a*b + b^2)*sqr
t(-a)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*
x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^
2 + 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3
 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x
+ e))*sin(f*x + e) - 8*((23*a^2 + 40*a*b + 15*b^2)*cos(f*x + e)^5 - (35*a^2 + 59*a*b + 20*b^2)*cos(f*x + e)^3
+ (15*a^2 + 25*a*b + 8*b^2)*cos(f*x + e))*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(((a^2 + 2*a*b + b^2)*f
*cos(f*x + e)^4 - 2*(a^2 + 2*a*b + b^2)*f*cos(f*x + e)^2 + (a^2 + 2*a*b + b^2)*f)*sin(f*x + e)), 1/60*(15*((a^
2 + 2*a*b + b^2)*cos(f*x + e)^4 - 2*(a^2 + 2*a*b + b^2)*cos(f*x + e)^2 + a^2 + 2*a*b + b^2)*sqrt(a)*arctan(1/4
*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(
f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e)^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f
*x + e)))*sin(f*x + e) - 4*((23*a^2 + 40*a*b + 15*b^2)*cos(f*x + e)^5 - (35*a^2 + 59*a*b + 20*b^2)*cos(f*x + e
)^3 + (15*a^2 + 25*a*b + 8*b^2)*cos(f*x + e))*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(((a^2 + 2*a*b + b^
2)*f*cos(f*x + e)^4 - 2*(a^2 + 2*a*b + b^2)*f*cos(f*x + e)^2 + (a^2 + 2*a*b + b^2)*f)*sin(f*x + e))]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \sec \left (f x + e\right )^{2} + a} \cot \left (f x + e\right )^{6}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^6*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sec(f*x + e)^2 + a)*cot(f*x + e)^6, x)

________________________________________________________________________________________

maple [C]  time = 1.90, size = 8605, normalized size = 51.53 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)^6*(a+b*sec(f*x+e)^2)^(1/2),x)

[Out]

result too large to display

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \sec \left (f x + e\right )^{2} + a} \cot \left (f x + e\right )^{6}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^6*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(f*x + e)^2 + a)*cot(f*x + e)^6, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\mathrm {cot}\left (e+f\,x\right )}^6\,\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(e + f*x)^6*(a + b/cos(e + f*x)^2)^(1/2),x)

[Out]

int(cot(e + f*x)^6*(a + b/cos(e + f*x)^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a + b \sec ^{2}{\left (e + f x \right )}} \cot ^{6}{\left (e + f x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)**6*(a+b*sec(f*x+e)**2)**(1/2),x)

[Out]

Integral(sqrt(a + b*sec(e + f*x)**2)*cot(e + f*x)**6, x)

________________________________________________________________________________________